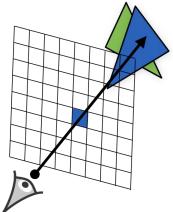
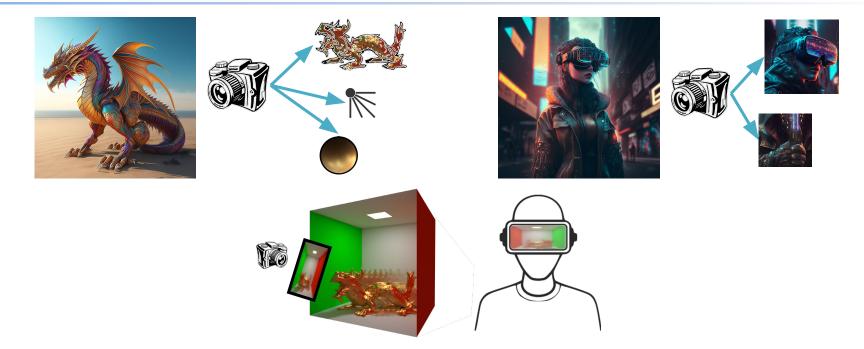
Camera Models

Dr Fangcheng Zhong

Camera Models

 Describe the mathematical relationship between the coordinates of a point in 3D space and the coordinates of its projection onto the image plane



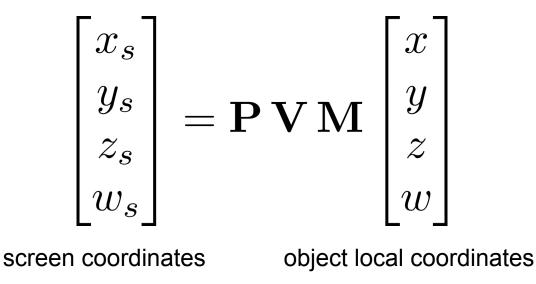


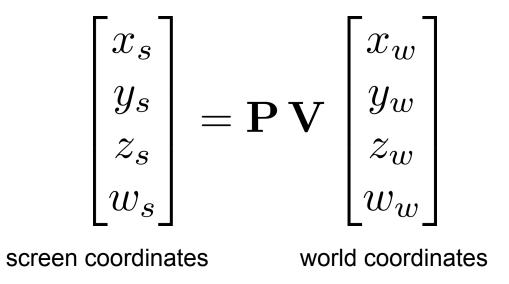
Camera (eye) is the bridge between the real and virtual world

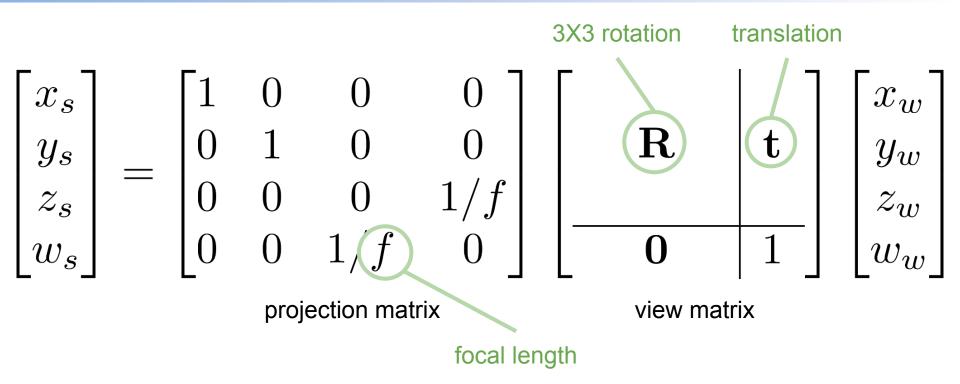
Outline

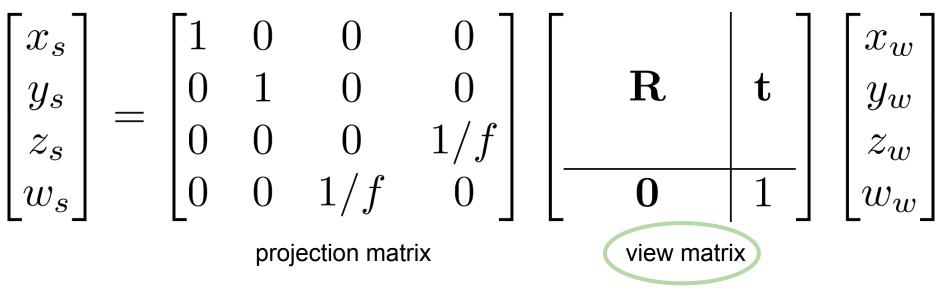
- Pinhole model
 - MVP matrices
 - intrinsic & extrinsic matrices
 - camera calibration
- Non-pinhole model
 - thin-lens equation
 - lens distortion
 - nonlinear calibration

In computer graphics, the MVP matrices describe such a relationship

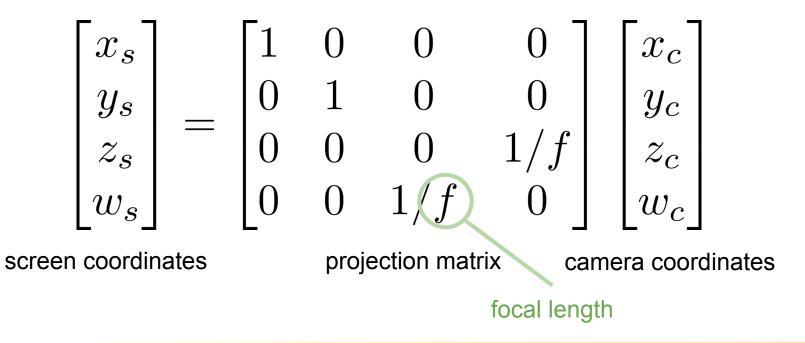


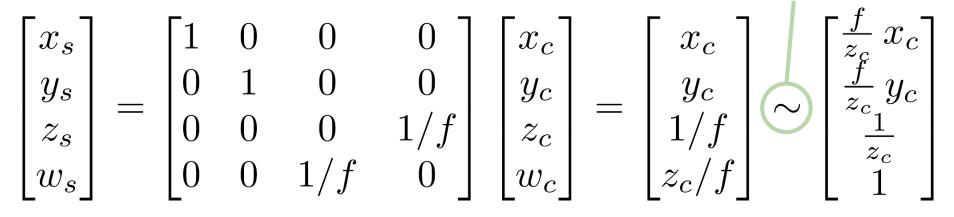






Referred to as extrinsic matrix in computer vision

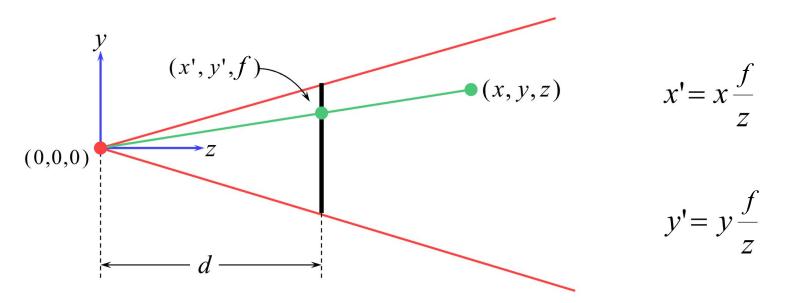


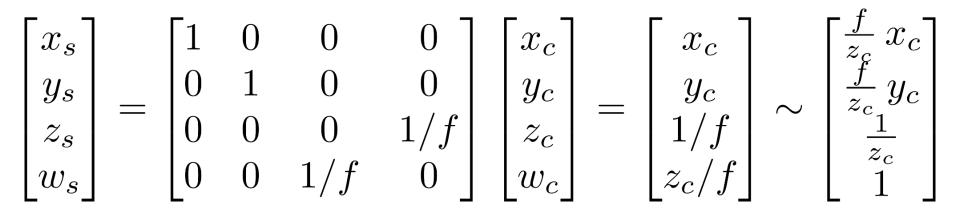


In rasterisation, screen coordinates $\left[\frac{x_s}{w_s}, \frac{y_s}{w_s}\right]$ are always clipped between [-1, 1] Focal length determines the field of view of the virtual camera. How?

equivalent relation

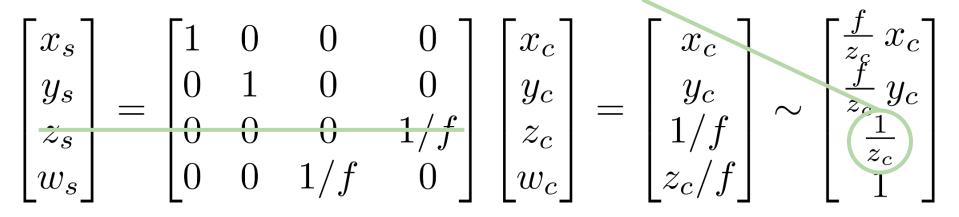
Recall Introduction to Graphics



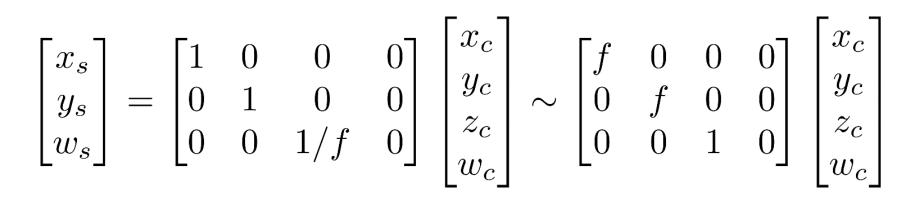


In computer vision, the projection matrix is replaced by an **intrinsic matrix** which maps the camera coordinates to image/pixel coordinates. How?

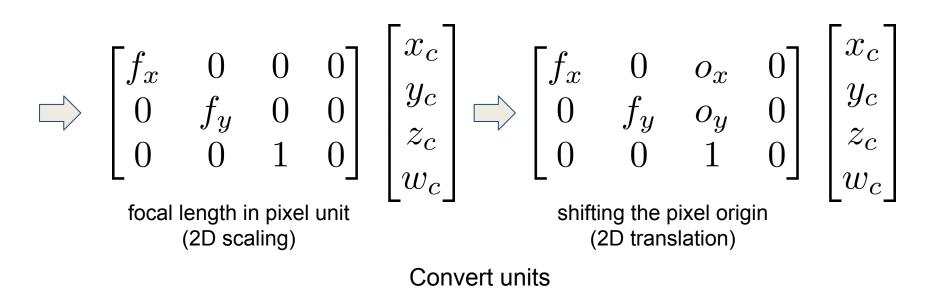
The intrinsic matrix does not preserve the depth information

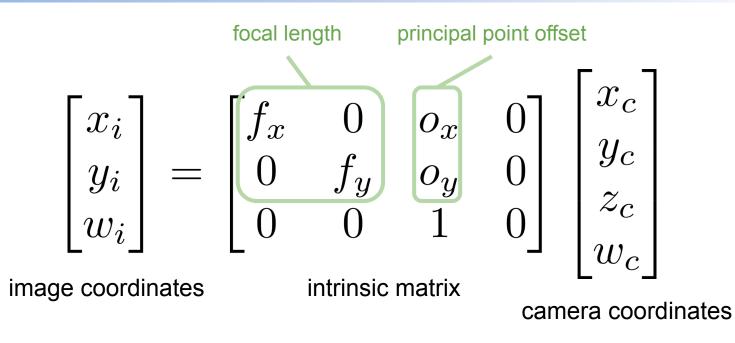


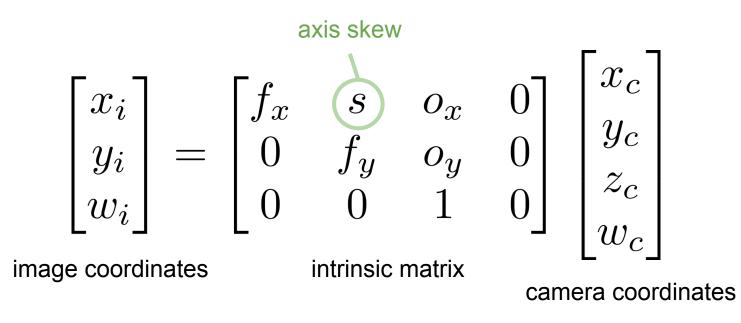
Derive the projection matrix from an intrinsic matrix



Remove depth from screen coordinates





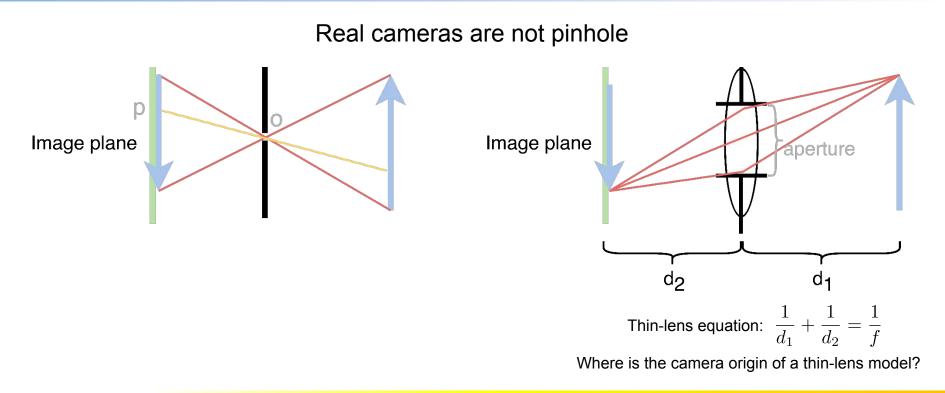


$$\begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3 \times 3} & \mathbf{t}_{3 \times 1} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} = \underbrace{\mathbf{K} \begin{bmatrix} \mathbf{R} | \mathbf{t} \end{bmatrix}}_{\mathbf{C}} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

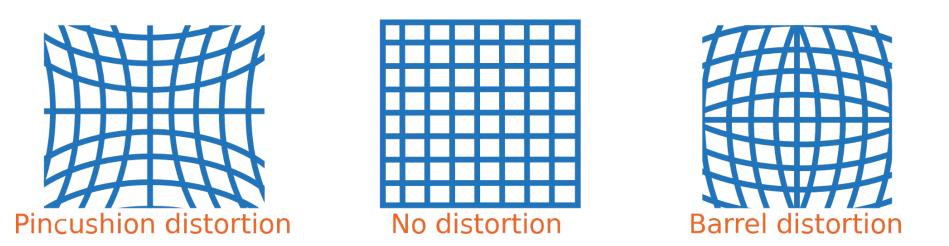
intrinsic matrix (3+3 free parameters) camera matrix (3+3 free parameters) camera matrix (3x4 shape)

Q: Why is it okay to fix the homogeneous division to 1? How come the extrinsic matrix does not need a scaling factor?

Thin-lens Model



Radial Distortion



Light rays bend at a different angle near the edges of the lens than those at the optical center

Radial Distortion

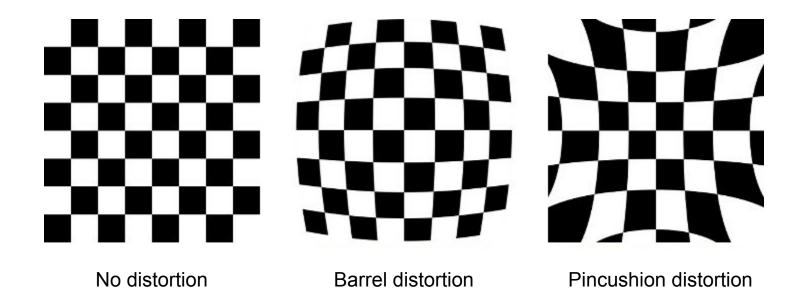
$$x_{\text{distorted}} = x(1 + k_1r^2 + k_2r^4 + k_3r^6)$$
$$y_{\text{distorted}} = y(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

x, y — undistorted pixel locations in normalized image coordinates (dimensionless), calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels

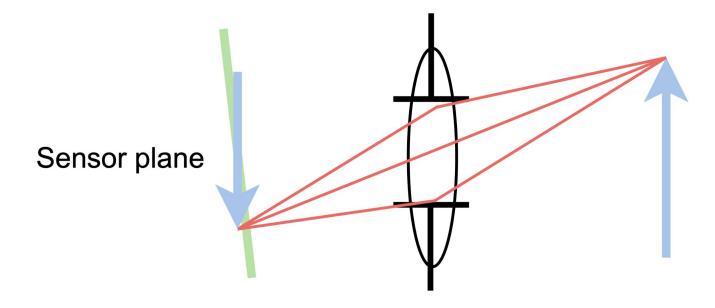
k1, k2, k3 — radial distortion coefficients of the lens

$$r^2 = x^2 + y^2$$

Radial Distortion



Tangential Distortion



Occurs when the lens and the image plane are not parallel

Tangential Distortion

$$x_{\text{distorted}} = x + 2p_1 xy + p_2 (r^2 + 2x^2)$$
$$y_{\text{distorted}} = y + p_1 (r^2 + 2y^2) + 2p_2 xy$$

x, y — undistorted pixel locations in normalized image coordinates (dimensionless), calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels

p1, p2 — tangential distortion coefficients

$$r^{2} = x^{2} + y^{2}$$

Camera Resectioning

• The process of estimating the camera parameters (e.g. extrinsic, intrinsic, distortion) given a camera model, i.e. geometric camera calibration

Extrinsic Calibration

• Equivalent to camera pose estimation,

i.e. camera pose and extrinsics can be mutually converted

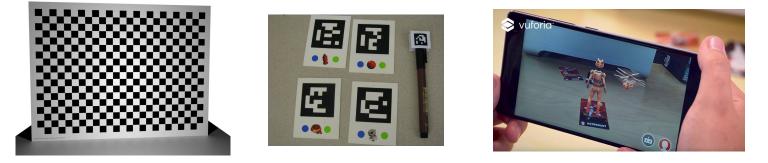
$$\mathbf{R}\mathbf{Q} = \mathbf{I} \Rightarrow \mathbf{Q} = \mathbf{R}^T$$

$$[\mathbf{R}|\mathbf{t}]\mathbf{c} = \mathbf{R}\mathbf{c} + \mathbf{t} = \mathbf{0} \quad \Rightarrow \quad \mathbf{c} = -\mathbf{R}^T\mathbf{t}$$

Q, c — camera pose (orientation Q + center c)
R, t — camera extrinsics (rotation R + translation t)

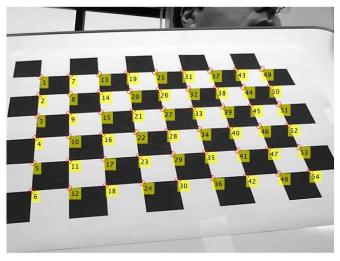
Extrinsic Calibration

- The Perspective-n-Point (PnP) problem: estimating the pose of a calibrated camera, i.e. known intrinsic and distortion, given a set of n 3D points in the world and their corresponding 2D projections in the image
- Correspondence established with known calibration patterns

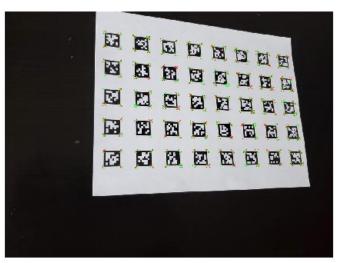


P3P algorithm: Gao, X.-S., X.-R. Hou, J. Tang, and H.F. Cheng. "Complete Solution Classification for the Perspective-Three-Point Problem." *IEEE Transactions on Pattern Analysis and Machine Intelligence.* Volume 25 Issue 8 pp. 930-943 August 2003

Calibration Patterns



Checkerboard



AprilTags

- similar to QR codes
- encode less data
- faster for real-time applications

Intrinsic Calibration

Calibrating both the camera intrinsics and extrinsics

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \underbrace{\mathbf{K} \begin{bmatrix} \mathbf{R} | \mathbf{t} \end{bmatrix}}_{\mathbf{C}} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

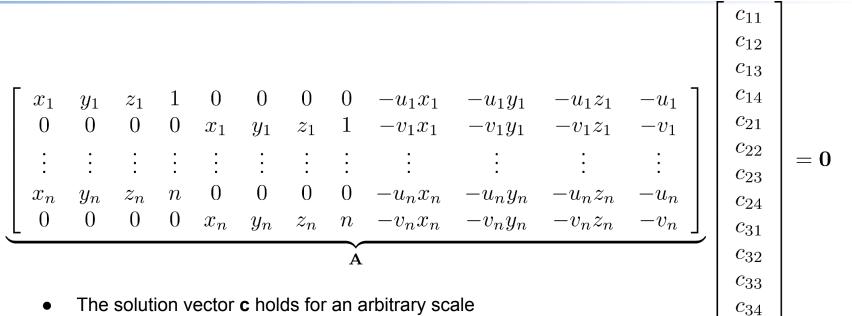
image coordinates interval in the coordinates in the coordinates is a construction of the coordinates in the coordinates is a construction of the coordinates is a co

Similar idea: solve for C given a set of n 3D points (x_i, y_i, z_i) in the world and their corresponding 2D projections (u_i, v_i) in the image

Intrinsic Calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \sim w \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix}$$
$$u_i = \frac{c_{11} x_i + c_{12} y_i + c_{13} z_i + c_{14}}{c_{31} x_i + c_{32} y_i + c_{33} z_i + c_{34}}$$
$$v_i = \frac{c_{21} x_i + c_{22} y_i + c_{23} z_i + c_{24}}{c_{31} x_i + c_{32} y_i + c_{33} z_i + c_{34}}$$

Intrinsic Calibration



- Direct linear transformation (DLT)
 - find c that minimises ||Ac|| subject to a unit vector constraint ||c||=1
 - solution \mathbf{c} = eigenvector of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ with the smallest eigenvalue

С

Direct Linear Transformation

Let $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$,

$$\begin{aligned} & \arg\min_{\mathbf{c}} ||\mathbf{A}\mathbf{c}|| \quad \text{s.t.} \quad ||\mathbf{c}|| = 1 \\ \Leftrightarrow & \arg\min_{\mathbf{c}} ||\mathbf{U}\mathbf{D}\mathbf{V}^{T}\mathbf{c}|| \quad \text{s.t.} \quad ||\mathbf{c}|| = 1 \\ \Leftrightarrow & \arg\min_{\mathbf{c}} ||\mathbf{D}\mathbf{V}^{T}\mathbf{c}|| \quad \text{s.t.} \quad ||\mathbf{V}^{T}\mathbf{c}|| = 1 \quad \text{Since both U and V are orthonormal} \\ \Leftrightarrow & \arg\min_{\mathbf{m}} ||\mathbf{D}\mathbf{m}|| \quad \text{s.t.} \quad ||\mathbf{m}|| = 1, \ \mathbf{m} = \mathbf{V}^{T}\mathbf{c} \end{aligned}$$

 $||\mathbf{Dm}||$ is minimum when $||\mathbf{m}|| = (0, ..., 0, 1) \Rightarrow \mathbf{c} = \mathbf{Vm}$, the last column of \mathbf{V} i.e. the eigenvector of $\mathbf{A}^T \mathbf{A}$ with the smallest eigenvalue

Direct Linear Transformation

- 🗸
 - Simple to formulate and compute
 - Minimise the algebraic error
- X
 Not directly outputting the camera parameters (can be extracted by an RQ decomposition)
 - Not modelling distortions
 - Not minimising the geometric error

Nonlinear Calibration

- Minimising the geometric error
- Simultaneously estimate all camera parameters (extrinsic, intrinsic, and distortion) using nonlinear least-squares minimisation (e.g. Levenberg–Marquardt algorithm)

$$\operatorname*{arg\,min}_{\beta} \sum_{i} \| \left(\mathbf{C}_{\beta}(\mathbf{p}_{i}) - \mathbf{x}_{i} \right) \|^{2}$$

 Use the DLT solution as the initial estimate of the intrinsics and extrinsics and zero as the initial estimate of the distortion coefficients

Nonlinear Calibration

 In most modern XR devices, the intrinsic and distortion parameters can be provided by the manufacturer (reduced to a PnP problem)

